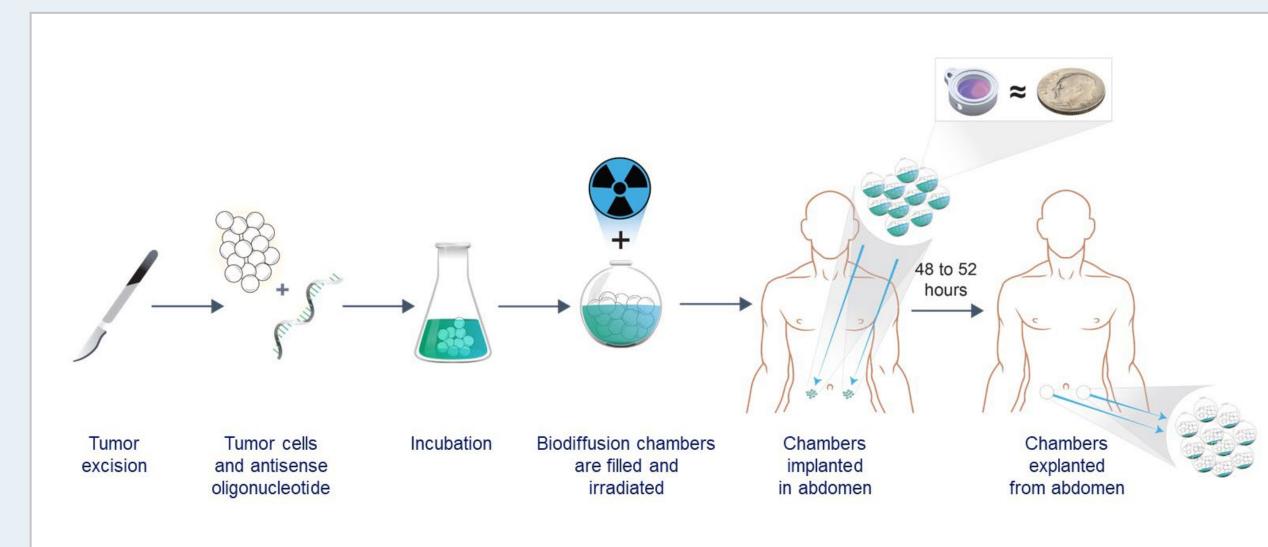
A randomized, multicenter, double-blind, phase 2b study of IGV-001, an autologous cell immunotherapy with antisense oligo IMV-001 targeting IGF-1R, vs placebo, in newly diagnosed glioblastoma patients

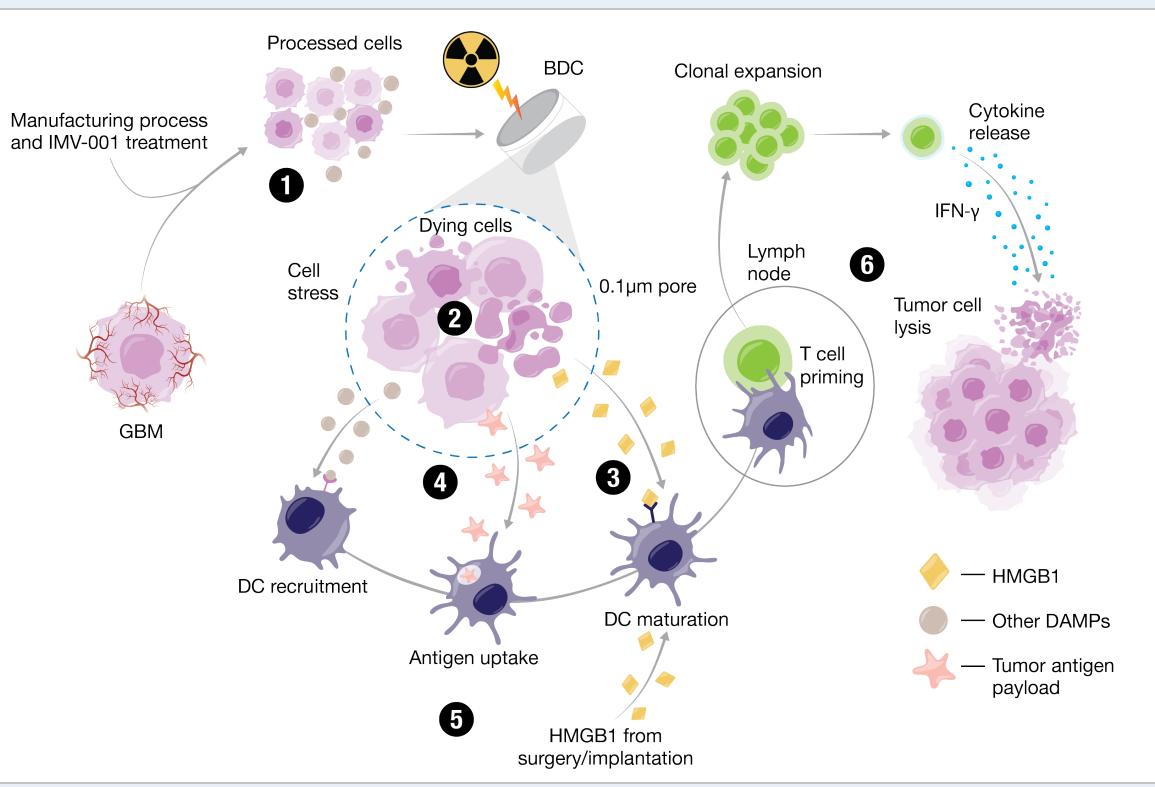
mvdx[®]

[®] Ian Y. Lee,¹ Simon Hanft,² Michael Schulder,³ Kevin D. Judy,⁴ Eric T. Wong,⁵ J. Bradley Elder,⁶ Linton T. Evans,⁷ Mario Zuccarello,⁸ Julian Wu,⁹ Sonikpreet Aulakh,¹⁰ Vijay Agarwal,¹¹ Rohan Ramakrishna,¹² Brian J. Gill,¹³ Alfredo Quiñones-Hinojosa,¹⁴ Cameron Brennan,¹⁵ Brad E. Zacharia,¹⁶ Carlos Eduardo Silva Correia,¹⁷ Soma Sengupta,¹⁸ Nduka M. Amankulor,¹⁹ Madhavi Diwanji,²⁰ Gregory K. Pennock,²⁰ Charles Scott,²⁰ Raul Perez-Olle,²⁰ David W. Andrews,²⁰ John A. Boockvar²¹

¹Henry Ford Health System, Detroit, MI, USA; ²Westchester Medical Center, Valhalla, NY, USA; ³Northwell Health at North Shore University Hospital, Lake Success, NY, USA; ⁴Thomas Jefferson University, Philadelphia, PA, USA; ⁵Rhode Island Hospital and The Warren Alpert Medical School of Brown University, Providence, RI, USA; ⁶Ohio State University, Columbus, OH, USA; ⁷Dartmouth Hitchcock Medical Center, Lebanon, NH, USA; ⁸University of Cincinnati Medical Center, Cincinnati, OH, USA; ⁹Tufts Medical Center, Boston, MA, USA; ¹⁰West Virginia University, Morgantown, WV, USA; ¹¹Montefiore Medical Center, Bronx, NY, USA; ¹²Cornell University Weill Medical Center, New York, NY, USA; ¹³Columbia University Medical Center, New York, NY, USA; ¹⁴Mayo Clinic, Jacksonville, FL, USA; ¹⁵Memorial Sloan Kettering Cancer Center, New York, NY, USA; ¹⁶Penn State University, Hershey, PA, USA; ¹⁷Jersey Shore University Medical Center, Neptune City, NJ, USA; ¹⁸University of North Carolina, NC, USA; ¹⁹University of Pennsylvania, PA, USA; ²⁰Imvax, Inc., Philadelphia, PA, USA; ²¹Lenox Hill Hospital, New York, NY, USA;


- IGV-001 is a cellular immunotherapy combination drug product consisting of a heterogeneous mixture of autologous cells that have been isolated from resected GBM tumor tissue incubated with IMV-001, a single-stranded 18-mer antisense oligonucleotide corresponding to the 6 codons downstream from the initiating methionine codon of the IGF-1R coding sequence

 Through its effects on IGF-1R, IMV-001 is believed to enhance antigen release and expected to activate antigen presentation (Figure 2)^{13,14}
- Evidence of immune activation has been observed in preclinical experiments^{15,16} and correlative clinical studies¹³
 - Dendritic cell maturation, CD4+ and CD8+ T-cell activation, and increase in central and effector memory
 T cells were observed in response to IGV-001 in vitro^{13,15,16}


RTID-08

- Standard-of-care (SOC) for first-line therapy in patients with newly diagnosed glioblastoma (GBM) is surgery followed by concurrent radiotherapy (RT) and temozolomide (TMZ) followed by adjuvant TMZ alone as maintenance¹
- With SOC, overall survival (OS) was 14.6 months and progression-free survival (PFS) was 6.9 months in the Stupp trial¹
- Insulin-like growth factor type 1 receptor (IGF-1R) is overexpressed in malignant cells, including GBM,² where
 it promotes cell growth, cell survival, and tumor progression, and is implicated in the pathophysiology of
 several human cancers³⁻⁶
- IGF-1R leads to activation of the PI3K/Akt and the Ras/Raf/MEK/MAPK signaling pathways^{3,4}
- IGF-1R signaling protects cancer cells from apoptosis induced by RT and anticancer drugs⁷⁻⁹
- Downregulation of IGF-1R function provides a selective target for anticancer therapies and antitumor activity of IGF-1R inhibition has been demonstrated in preclinical studies^{3,10-12}
- IGV-001 is the first product developed using Goldspire[™], Imvax's proprietary platform (**Figure 1**)

Figure 1. The Goldspire[™] platform

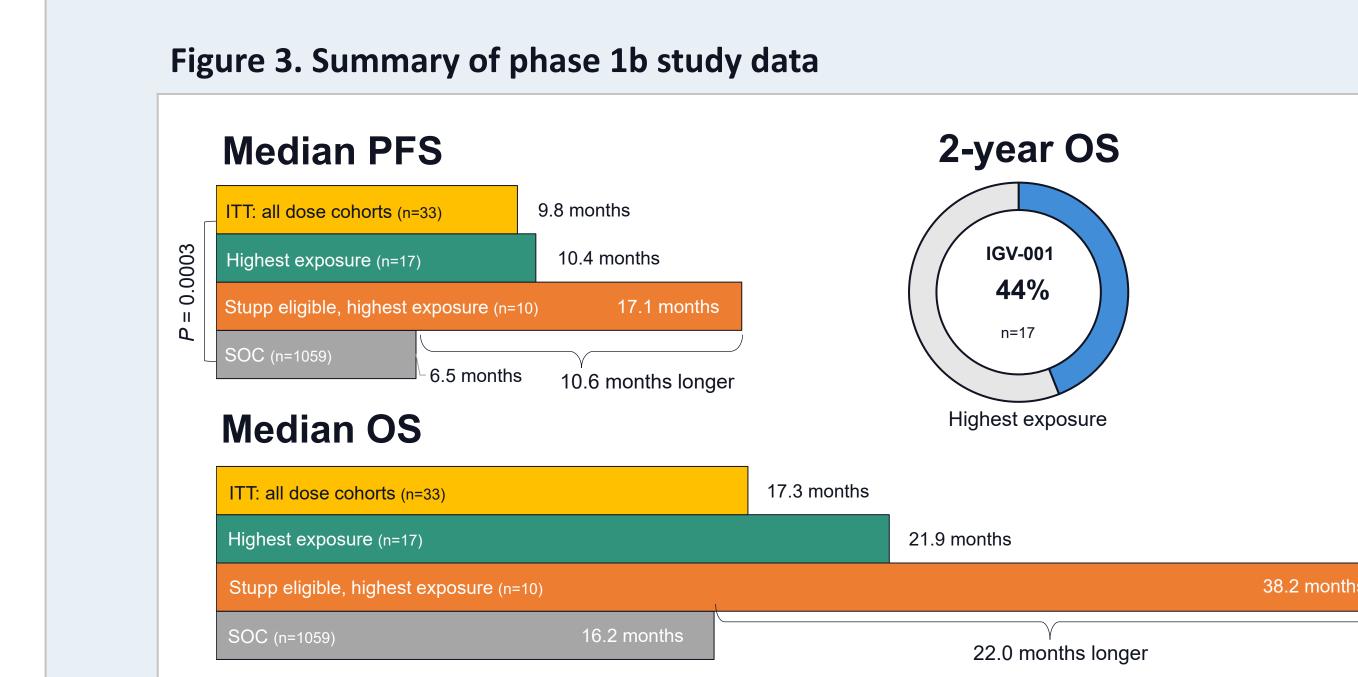
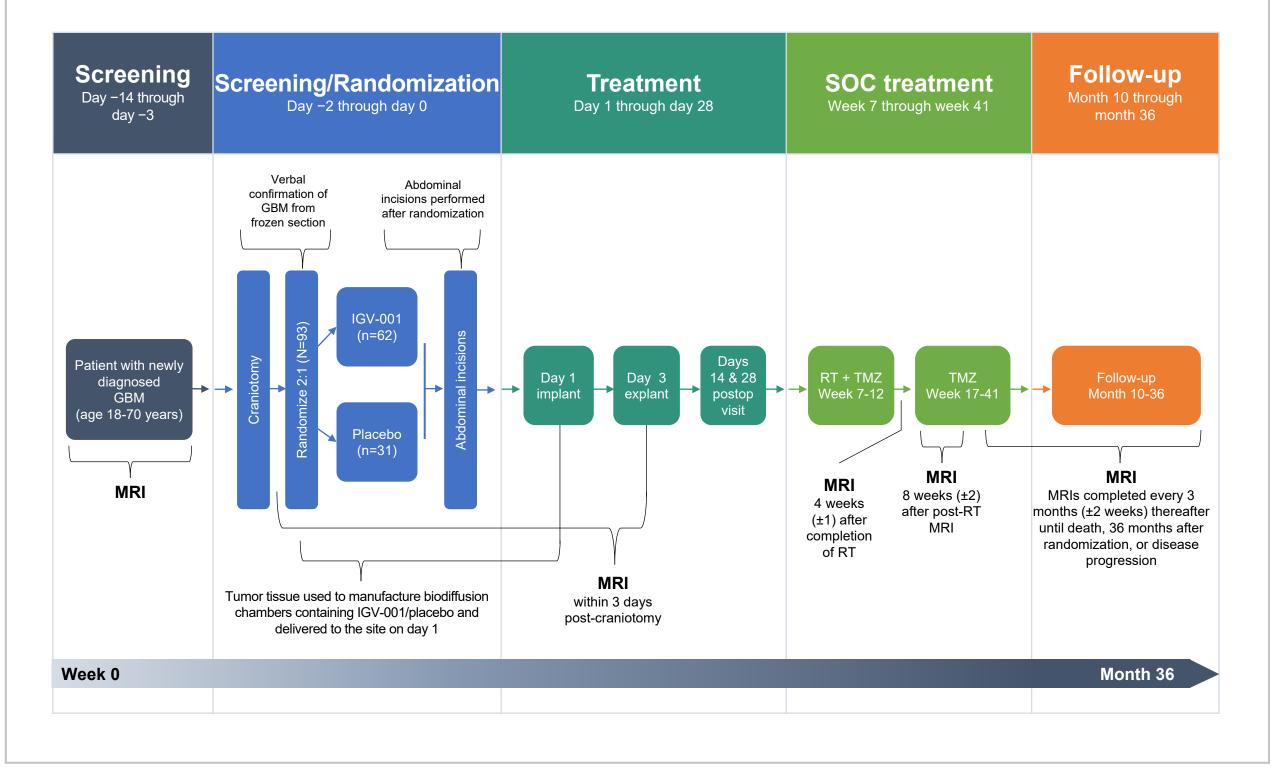


Figure 2. The IGV-001 manufacturing assembly and 6-stage mechanism of action

Processed cells removed at the time of glioblastoma resection are treated with IMV-001 (4 μ g per chamber or 80 μ g per dose). The combination drug product (IMV-001treated processed autologous glioblastoma cells plus additional IMV-001) is filled into biodiffusion chambers (BDC), which are then irradiated for implantation into the abdomen of the patient. After implantation, the following stages occur: (1) After manufacturing process, combination drug product (IMV-001-treated autologous tumor cells + IMV-001) is placed in BDCs, which are then irradiated and sent to the clinical site for implantation into the abdomen of the patient; (2) due to the irradiation, isolated IMV-001 treatment, low-nutrient environment, and inability to adhere inside the BDC, tumor cells are exposed to cellular stresses that ultimately result in cell death; (3) high mobility group box 1 (HMGB1), and damage-associated molecular patterns (DAMPs) produced during immunogenic cell death (ICD), are released from stressed/dying cells inside the BDCs and from the surrounding damaged tissue at the implantation site; (4) also released from the BDCs is a tumor antigen payload (<0.1 μ m in size); (5) dendritic cells (DCs) are recruited by DAMPs adjuvanticity and mature upon tumor antigen uptake; (6) DC-primed T cells undergo clonal expansion and tumor-antigen specific T cells kill tumor cells.

- IGV-001 contributes to the induction of tumor immunity through multiple mechanisms, including the enhancement of antigen production by autologous tumor cells, inhibition of anti-inflammatory mechanisms, and the stimulation of antigen presentation in the patient (Figure 2)¹⁷⁻¹⁹
- In a phase 1b study (NCT02507583),¹³ median PFS and OS compared favorably with SOC arms of published studies (Figure 3)²⁰⁻²²

IGV-001 was well tolerated and showed an exposure-response relationship, supporting the use, in subsequent clinical studies, of the highest exposure evaluated in the phase 1b study¹³


• Here, we describe the design and rationale of a randomized phase 2b study (NCT04485949) evaluating IGV-001 compared with placebo, both followed by SOC treatment in patients with newly diagnosed GBM

METHODS

Study objectives and study design

- The IGV-001 study (NCT04485949) is a multicenter, randomized, double-blind, placebo-controlled phase 2b study investigating the safety and efficacy of IGV-001 plus SOC (RT and TMZ treatments) versus placebo plus SOC in patients with newly diagnosed GBM (**Figure 4**)
- Resected GBM cancer cells treated with IMV-001 are encapsulated in biodiffusion chambers (BDCs) of 0.1 µm pore size, which allow tumor antigens and immune-stimulating molecules but not tumor cells to diffuse, then irradiated, producing IGV-001, which is implanted into 2 abdominal sites (between the rectus abdominis muscle and fascia) of patients for 48 to 52 hours, then explanted (Figure 1)
- Patients will be randomized 2:1 to either receive IGV-001 at 16-20 BDCs or placebo for 48 to 52 hours and stratified by age groups (≤50 years vs >50 years at randomization)
- The BDCs implanted in patients in the placebo group contain inactive solution without GBM tumor cells and without IMV-001
- Six weeks after randomization, patients will receive RT (54-60 Gy total dose delivered as 2 Gy per fraction) per institutional standards (hence per investigators' choice) for 5 days per week along with TMZ (75 mg/m² orally) once daily for 6 weeks
- Four weeks after completion of RT, patients will receive TMZ maintenance (150-200 mg/m² orally) on days 1-5 of each 28-day cycle for 6 cycles (week 41)

Figure 4. Study design

Table 1. Primary and secondary study endpoints

Primary	Secondary	Tertiary	Exploratory	Safety
endpoint	endpoint	endpoints	endpoints	endpoint
PFS in patients with newly diagnosed GBM treated with IGV-001 versus patients treated with placebo	OS in patients treated with IGV-001 versus patients treated with placebo	 Time to deterioration of KPS score PFS OS within subgroups of patients with methylated MGMT+ and unmethylated MGMT- PFS, OS within the subgroup of patients with histologic confirmation of WHO Grade 3 (diffuse astrocytic glioma, IDH wild type, with molecular features of WHO Grade 4 GBM) or WHO Grade 4 GBM 	 QOL Immune response markers Response rate in patients who have measurable residual disease after surgery Tumor mutational burden 	Determine safety and tolerability of IGV-001 in patients with newly diagnosed GBM

GBM, glioblastoma; IDH, isocitrate dehydrogenase; KPS, Karnofsky Performance Status; MGMT, methylguanine-DNA methyltransferase; OS, overall survival; PFS, progression-free survival; QOL, quality of life; WHO, World Health Organization.

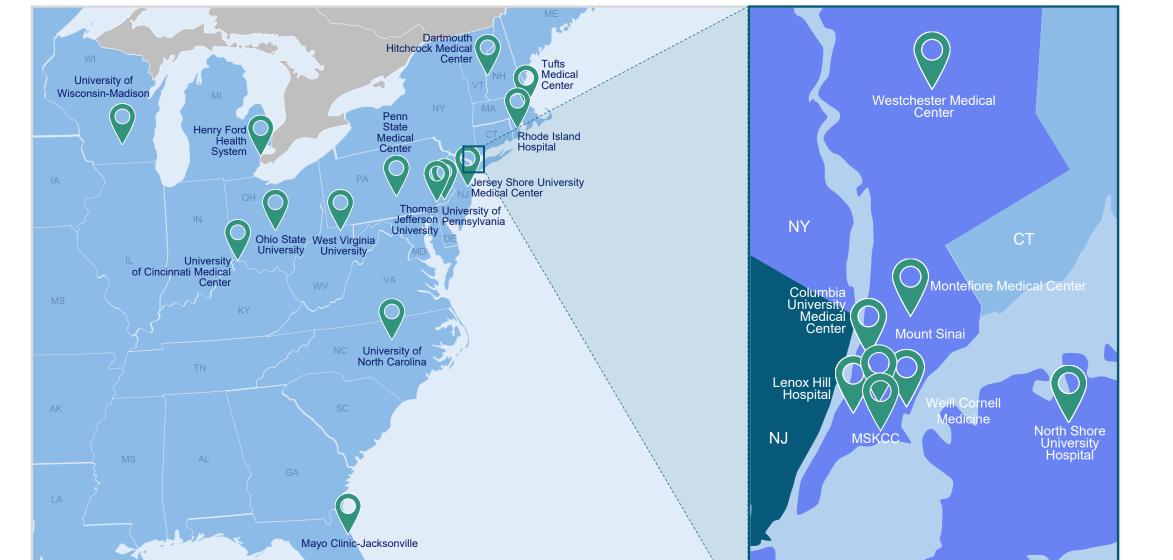
Key inclusion criteria

- Adult aged ≥18 and ≤70 years at screening
- Karnofsky Performance Status (KPS) score ≥70 at screening
- Diagnosis of GBM (histologic and/or WHO Grade 4 molecular diffuse astrocytoma) with confirmation from intraoperative frozen section
- Diagnostic contrast-enhanced magnetic resonance imaging (MRI) scan with fluid-attenuated inversion recovery sequence of the brain and thin cuts (1-1.5 mm) at screening. Patients must have a resectable contrast-enhancing lesion preoperatively with a total biperpendicular product of 4 cm² in 2 different planes (axial, sagittal, or coronal)
- Tumor location in the supratentorial compartment
- Acceptable laboratory parameters and adequate bone marrow and organ function

Key exclusion criteria

- Bihemispheric disease, multicentric disease, or disease burden involving the brainstem or cerebellum based on MRI after gadolinium enhancement
- Any previous surgical resection or any anticancer intervention for GBM
- Recurrent glioma, a concurrent malignancy, or malignancy within 3 years of randomization

Study endpoints


- Endpoints are summarized in Table 1
- The primary outcome is PFS, defined as the time from randomization to event or censoring, as determined by blinded central radiology review

- Tertiary efficacy objectives will have multivariate analyses performed using the Cox proportional hazards model for PFS and OS to determine independent prognostic factors
 - The covariates evaluated for the multivariate models will be the assigned treatment group; age group; MGMT methylation status (MGMT+ or MGMT–); histologic confirmation of either WHO Grade 3, WHO Grade 4 GBM, or diffuse astrocytoma; IDH-mutated, with any histologic feature of GBM and/or a *CDKN2A/B* mutation; and extent of resection (gross, subtotal, or partial)
- KPS score will be analyzed over time using descriptive statistics. Time to deterioration of the KPS score will be analyzed using the product-limit method
- Safety will be reported as the incidence of procedure-related adverse events and treatment-emergent adverse events from the time of randomization and will be graded according to the National Cancer Institute Common Terminology Criteria for Adverse Events, version 5.0
 - Safety data will be reported overall as well as separately for the screening period, the treatment period, and the SOC treatment period until the 30-day safety visit

Status

• The study is ongoing and, as of October 24th, there are 22 open sites in the United States (**Figure 5**)

Figure 5. Study locations

GBM, glioblastoma; MRI, magnetic resonance imaging; RT, radiotherapy; SOC, standard of care; TMZ, temozolomide.

- Secondary outcomes include OS, defined as the time from randomization to death due to any cause, and safety **Statistical methods**
- The intention-to-treat (ITT) analysis and safety analysis sets are defined as all randomized patients
- The analysis of the primary endpoint PFS will be triggered when ≥55 PFS events in the ITT analysis set have been observed per blinded central radiology review, based on Response Assessment in Neuro-Oncology (RANO) criteria,²³ and will be performed using a stratified log-rank test and a 1-sided 0.05 significance level
- The study is designed to achieve 80% power at a 1-sided α of 0.05 to detect a statistically significant difference in PFS between groups
 - Assuming an accrual period of ~7 months, a 7% yearly rate for loss to imaging follow-up, and 2:1 randomization, approximately 93 patients will be randomized to observe 55 PFS events in the ITT analysis set by 11-12 months after the last patient is randomized
- Approximately 36 months after randomization of the last patient, the final analysis of OS will be performed using a stratified log-rank test and a 1-sided 0.05 significance level, adjusted using the Benjamini-Hochberg approach²⁴

	FL			

ACKNOWLEDGMENTS

Funding for the IGV-001 study and medical writing support were provided by Imvax, Inc. (Philadelphia, PA, USA). Figure 2 was created with BioRender.com and then further modified. Medical writing was provided by Emily Cullinan, PhD, CMPP, and Francesca Balordi, PhD, CMPP, of The Lockwood Group (Stamford, CT, USA).

REFERENCES

1. Stupp R, et al. *N Engl J Med.* 2005;352(10):987-996. **2.** Maris C, et al. *Br J Cancer.* 2015;113(5):729-737. **3.** Larsson O, et al. *Br J Cancer.* 2005;92(12):2097-2101. **4.** Philippou A, et al. *Front Endocrinol (Lausanne).* 2013;4:31. **5.** Philippou A, et al. *Mutat Res Rev Mutat Res.* 2017;772:105-122. **6.** Scartozzi M, et al. *Discov Med.* 2011;11(57):144-153. **7.** Dunn SE, et al. *Cancer Res.* 1998;58(15):3353-3361. **8.** Nakamura S, et al. *Exp Cell Res.* 1997;235(1):287-294. **9.** Turner BC, et al. *Cancer Res.* 1997;57(15):3079-3083. **10.** Exley MA, et al. *J Clin Med.* 2022;11(4):1069. **11.** Ryan PD, et al. *Oncologist.* 2008;13(1):16-24. **12.** Sachdev D, et al. *Mol Cancer Ther.* 2007;6(1):1-12. **13.** Andrews DW, et al. *Clin Cancer Res.* 2021;27(7):1912-1922. **14.** Andrews DW, et al. *J Clin Oncol.* 2001;19(8):2189-2200. **15.** Zellander A, et al. *J Immunother Cancer.* 2022;10(suppl 2):A1113 (Abstract 1398). **16.** Zilberberg J, et al. *Cancer Res.* 2022;82(suppl 12):Abstract 626. **17.** Cultrara C, et al. *J Immunother Cancer.* 2022;10(suppl 2):A1113 (Abstract 1071). **18.** Uhl C, et al. CRI-ENCI-AACR Sixth International Cancer Immunotherapy Conference (CICON) 2022; Abstract A001. **19.** Zilberberg J, et al. *J Immunother Cancer.* 2021;9(suppl 2):A231 (Abstract 218). **20.** Chinot OL, et al. *N Engl J Med.* 2014;370(8):709-722. **21.** Gilbert MR, et al. *N Engl J Med.* 2014;370(8):699-708. **22.** Stupp R, et al. *Lancet Oncol.* 2009;10(5):459-466. **23.** Wen PY, et al. *J Clin Oncol.* 2017;35(21):2439-2449. **24.** Benjamini Y, et al. *J R Stat Soc Series B Stat Methodol.* 1995;57(1):289-300.

Presented at Society for NeuroOncology (SNO) | November 15-19, 2023 | Vancouver, Canada © Copyright 2023 IMVAX[®], Inc. All rights reserved.